|
Making mobile phones safer. Dr Andrew Goldsworthy |
|
Dr Andrew Goldsworthy explains why increasing the power of mobile base stations endangers not only human health, but the environment – and how mobile telephony could be made not only safer, but more reliable and cheaper for the companies to operate.
Making Mobile Phones Safer Mobile phone radiation can be linked to colony collapse disorder and immune dysfunction Why the bees are important. In addition, cereals do not provide an adequate balanced diet. In particular, they are almost totally lacking in vitamin C, which is essential to prevent scurvy. Scurvy is a fatal disease in which the body is unable to make the collagen needed for the connective tissue that binds our tissues and organs together. Without it, we literally begin to fall apart. The teeth fall out, the joints deteriorate and it leads to a slow and very painful death. Bee-pollinated crops are the main natural sources of vitamin C. Although some vitamin C producing species can self-pollinate or be propagated vegetatively, these are of necessity inbred and lack genetic diversity. Consequently, they will be less able to adapt to changing environmental conditions, including climate change and newly-evolved pathogens. They cannot be expected to last us for long. Electromagnetic radiation is the most likely cause of bee loss The Cryptochromes Cryptochromes are used for animal navigation Electromagnetic fields disrupt cryptochrome-based magnetic navigation. Solar navigation can also be affected. The radiation from mobile phone masts and similar wireless devices can therefore disrupt bee navigation, both by the sun and by the earth’s magnetic field. This can reduce the number of foraging bees returning to the hive and result in colony collapse disorder. Effects on plants There is mounting anecdotal evidence that radiation from mobile phone base stations disturbs these functions. I would like to invite you to see this for yourself. There is a very powerful Vodafone mast just outside the northeast corner of Hanger Hill Park, London W5, which appears to have damaged many of the nearby trees inside the park. Those in the main beam within a radius of about 400metres often show growth abnormalities with the younger shoots dieing. Many trees have actually died completely in the ten years or so that the mast has been operational. Most of them have now been removed, but there is still evidence of damage in those that remain. The cause of death also seems to be related to cryptochrome. Many of the mortalities occurred in dry conditions, possibly because the radiation kept the stomata open at night when they should have been closed. Another abnormality still visible in several trees is their partial or complete failure to shed their leaves and seeds in autumn; they remain dead on the tree but still firmly attached. It is as if the radiation absorbed by cryptochrome is perceived as light so that the tree behaves as if it was in continuous light and cannot respond to short days. This type of behaviour appears to have increased considerably since the power of the mast was increased to accommodate 3G. A further effect of the radiation seems to be on the functioning of the plant equivalent of the immune system, which leads to attack by pathogens to which they would normally be resistant. This may explain the mysterious increase in general tree mortality from disease, especially bacterial diseases, in recent years. As in animals, cryptochrome plays a vital role in the regulation of the plant immune system. For example; recent work by Wu and Yang showed that Arabidopsis mutants lacking a functional cryptochrome 1 had a lowered resistance to the bacterial pathogen Pseudomonas syringae, whereas similar plants in which the gene was over-expressed had enhanced resistance. If radio-frequency electromagnetic radiation were to compromise the normal functioning of cryptochrome, we might expect that this would reduce the plant’s resistance to disease. Effects on humans
What can be done about it?
2. Use Femtocells. This technology uses low power domestic base stations connected to the broadband network by a wired or optical links. It is already the preferred option for the mobile phone operators since it is cheaper, more reliable, and the consumer bears most of the cost. It also reduces the need for investment in high power base stations and reduces the traffic through each. If Femtocells lead to the bulk of the traffic being routed though these very low power base stations, which are partially shielded by the walls of the house, less will be routed through the major base stations and the effects on the bees and other wildlife should be minimised. However, there are some very important provisos. The Femtocells should be no more powerful than is necessary to cover a single household and should automatically cease transmission when not in use (rather like an Orchid Low Radiation DECT Phone Base Station). This is not just to save electricity but also to minimise disruption of the circadian rhythms and immune systems of the users, their neighbours and wildlife. The fact that most of the Femtocells would then be inactive at night when the immune system would otherwise be most active is particularly important. 3. Restrict the bandwidth of the signal Other Modifications Nevertheless, it may be possible to do something about this too. DNA damage is most likely due to the release of structurally-important calcium ions from cell membranes by modulated radio waves, first noted by Bawin et al. in 1975 (Effects of modulated VHF fields on the central nervous system. Ann NY Acad Sci 247: 74-81). There is strong evidence that this weakens the membranes and makes them more inclined to leak (A Goldsworthy in “Plant Electrophysiology: Theory and Methods” Ed AG Volkov. Springer 2006: ISBN-10 3-540-32717-7). When lysosomes leak, they release digestive enzymes, including DNase, into the main part of the cell to cause DNA fragmentation. Damage to the membranes of mitochondria will release free radicals that are normally used in the controlled oxidation of food products, but are kept locked up safely within the structure of the membrane. These free radicals can also damage DNA. However, it should be possible to modify the transmitted signal to avoid these effects on membranes too. This too may be easier than you think. Andrew Goldsworthy BSc PhD More articles on mobile phones and masts First Published in March 2010 |